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Abstract

The frequency range over which a linear passive vibration isolator is effective is often limited by the mount stiffness

required to support a static load. This can be improved upon by incorporating a negative stiffness element in the mount

such that the dynamic stiffness is much less than the static stiffness. In this case, it can be referred to as a high-static–

low-dynamic stiffness (HSLDS) mount. This paper is concerned with a theoretical and experimental study of one such

mount. It comprises two vertical mechanical springs between which an isolated mass is mounted. At the outer edge of each

spring, there is a permanent magnet. In the experimental work reported here, the isolated mass is also a magnet arranged

so that it is attracted by the other magnets. Thus, the combination of magnets acts as a negative stiffness counteracting the

positive stiffness provided by the mechanical springs. Although the HSLDS suspension system will inevitably be nonlinear,

it is shown that for small oscillations the mount considered here is linear. The measured transmissibility is compared with a

comparable linear mass–spring–damper system to show the advantages offered by the HSLDS mount.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Improving the performance of vibration isolators continues to be an aim of both engineers and researchers.
If an isolator is linear then there is a trade-off between isolation and static deflection [1,2]. To overcome this
limitation, it is possible to design the isolator so that its stiffness is nonlinear. A desirable characteristic is a
high-static stiffness resulting in a small-static deflection, and a small dynamic stiffness resulting in a low
natural frequency and hence a greater frequency range over which there is vibration isolation [3].

There are a number of ways to obtain this desirable nonlinear characteristic. Virgin [4] considered a
structure made from a highly deformed elastic element to achieve a softening spring. Platus [5] exploited the
buckling of beams under axial load in a specific configuration to achieve a negative stiffness in combination
with a positive stiffness, and hence low-dynamic stiffness. Others have achieved the same by connecting linear
springs with positive stiffness in parallel with elements of negative stiffness [6–8]. In this paper, a similar
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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approach is taken, but the negative stiffness element is achieved by using magnets arranged in an attracting
configuration. Magnets have been used in vibration isolation systems in the past, but have often been
configured so that they act in repulsion and hence act as springs with positive stiffness. The advantage of such
a system is that, for small oscillations, the natural frequency is independent of the isolated mass. Examples of
such systems are given in Refs. [9–11]. An interesting example using a pair of magnets in an attracting
configuration, which is placed in series with a mechanical spring, has been reported by Mizuno et al. [12].
The series combination of a negative stiffness due to the magnets, with an equal but positive stiffness due to
the mechanical spring, results in a system which has infinite stiffness. Although this arrangement is not very
useful for vibration isolation, it can be used to obtain very high natural frequencies and significantly reduce
the motion of a mass suspended on such a system when subjected to direct rather than base excitation.

A common factor of the approaches using a parallel combination of positive and negative stiffness elements
is that it is possible to achieve simultaneously a high-static–low-dynamic stiffness (HSDLS) isolator. These
devices are sometimes referred to also as quasi-zero-stiffness mechanisms because of their potential capacity of
reaching zero dynamic stiffness [3,8].

The aim of this paper is to explore the design of an HSLDS isolator in which positive stiffness from linear
springs is counteracted by negative stiffness from attracting magnets. An analytical model of the isolator is
derived and the important parameters that govern its effectiveness are determined. A prototype isolator has
been built and tested, and its performance is compared with that predicted from the analytical model. To
assess the degree of nonlinearity for small oscillations, the nonlinear component of the stiffness force acting on
the isolated mass at the static equilibrium position is compared with the linear component of the stiffness
force.

2. Theory

The isolator is depicted in Fig. 1. The isolated mass, m, is suspended on two springs each of stiffness ks,
which are connected to a frame that is held together by a stiff round bar. There are three magnets in the
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Fig. 1. Schematic of the HSLDS isolator consisting of mechanical springs providing a positive stiffness and the attracting magnets

providing a negative stiffness.
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isolator arranged in an attracting configuration. The central magnet (which in the experiments reported in
Section 3 acts as the isolated mass) has been drilled so that it is free to move in the vertical direction on the
smooth round bar, while the other two magnets are fixed with respect to each other. The magnets are thus
arranged to act as a negative stiffness opposing that of the mechanical springs.

The magnetic force, fm, acting between two attracting magnets a distance, d, apart is given by [13]

f m ¼
Cm

d2
, (1)

where Cm is the magnetic constant that depends on the strength of the magnets and the medium in which they
operate. Considering Eq. (1) and the arrangement of the isolator shown in Fig. 1, the force due to the magnets
acting on the mass, m, when it is displaced a distance, x, from the central position is given by

f m ¼ �Cm

4dx

ðd2
� x2Þ

2
. (2)

The relationship between an applied force, f, and the displacement of the mass, including the effects of
mechanical springs, is thus given by

f ¼ 2ksx� 4Cm

dx

ðd2
� x2Þ

2
. (3)

The isolator stiffness can be obtained by differentiating f with respect to x to give

k ¼ 2ks � 4Cm
dðd2
þ 3x2Þ

ðd2
� x2Þ

3
. (4)

Eqs. (3) and (4) can be written in non-dimensional form, respectively, as

f̂ ¼ x̂� a
x̂

ð1� x̂2
Þ
2

(5)

and

k̂ ¼ 1� a
ð1þ 3x̂2

Þ

ð1� x̂2
Þ
3
, (6)

where f̂ ¼ f =2ksd, x̂ ¼ x=d, a ¼ 2Cm=ðksd
3
Þ, k̂ ¼ k=2ks and �1px̂p1. It should be noted that the parameter

a is the ratio of the magnitude of stiffness due to the magnets when the mass is in the central position ðx̂ ¼ 0Þ
and the total stiffness of mechanical springs.

Figs. 2(a) and (b) show the non-dimensional force and stiffness as function of the non-dimensional
displacement for several values of a. In particular, from Fig. 2(b) it can be seen that the stiffness
reaches its maximum x̂ ¼ 0. The function of the isolator is to achieve a much lower stiffness at the static
equilibrium position than is achievable by the mechanical springs alone, i.e. k̂ð0Þ51. Let k̂0 be the maximum
tolerated stiffness. By setting x̂ ¼ 0 in Eq. (6), the relationship between the parameter a and k̂0 is given by

k̂0 ¼ 1� a, (7)

which is zero when a ¼ 1� k̂0. This is to be avoided since, given the softening characteristic of the magnets,
the equilibrium position becomes unstable. Rather, a value of k̂0 is chosen such that 0ok̂0o1. There is clearly
a trade-off between achieving a low-dynamic stiffness in the vicinity of the equilibrium position and ensuring
stability for large excursions from it. Figs. 2(a) and (b) show that the lower the desired stiffness (the higher the
value of a) the narrower the displacement range over which there is positive stiffness. The value of the
maximum displacement from the equilibrium position before the stiffness becomes zero can be found by
setting Eq. (6) to zero and solving for x̂, which yields

x̂max ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½að

ffiffiffiffiffiffiffiffiffiffiffi
4þ a
p

� 2Þ�1=3 �
a

½að
ffiffiffiffiffiffiffiffiffiffiffi
4þ a
p

� 2Þ�1=3

r
. (8)

To examine the relationship between the maximum displacement x̂max and the parameter a, it is helpful to
simplify Eq. (8) by making some approximations. Using a Taylor-series expansion to third order for small x̂,



ARTICLE IN PRESS
f̂

x̂

k̂

x̂

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Fig. 2. Static characteristics or the HSLDS isolation mount: (a) force–displacement characteristic and (b) stiffness of the system for

different values of the parameter a. Solid line a ¼ 1, dashed line a ¼ 0.5, dotted line a ¼ 0.25 and dash–dotted line a ¼ 0.05.
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Eq. (5) results in

f̂ � ð1� aÞx̂� 2ax̂3, (9)

from which the stiffness can be found by differentiating with respect to x̂, to give

k̂ � ð1� aÞ � 6ax̂2. (10)

From this approximate expression of the stiffness, the largest displacement from the static equilibrium
position before the stiffness becomes zero can be determined. It is given by

ðx̂maxÞapp ¼

ffiffiffiffiffiffiffiffiffiffiffi
1� a
6a

r
. (11)

Both Eqs. (8) and (11) are plotted in Fig. 3. It can be seen that the approximation error is reduced as a
increases (in the experimental rig described in the following section a ¼ 0.72 and the approximation given by
Eq. (11) overestimates the maximum displacement by about 7.5%). From Eq. (7), it can be seen that an
increase of a corresponds to a lower maximum stiffness until, in the limit for a ¼ 1, it becomes zero. Thus,
Fig. 3 illustrates the trade-off between maximum stiffness and available excursion without the stiffness
becoming negative.

As mentioned in Section 1, the function of the nonlinear magnetic stiffness is to reduce the overall dynamic
stiffness of the isolator. Ideally, this should not cause undesirable nonlinear dynamic behaviour. One way of
estimating whether this will occur is to examine the relative contributions of the nonlinear and linear stiffness
forces given in Eq. (9). The ratio of these forces is given by Rnl ¼ �2ax̂2=ð1� aÞ, the magnitude of which is
plotted in Fig. 4 for a ¼ 0.72. It can be seen that the nonlinear component of stiffness is less than about 5% of
the linear component of the stiffness provided that the maximum excursion of the mass from the static
equilibrium position is less than about 0.1d. If this condition holds, then the system can be assumed to be
approximately linear with constant stiffness given by

k̂ � 1� a (12)

so that the ratio of the natural frequency of the HSLDS isolator on to the natural frequency of the isolator
with the mechanical springs alone ol, is given by

on

ol

¼
ffiffiffiffiffiffiffiffiffiffiffi
1� a
p

. (13)
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Thus, because of the magnets, the frequency at which isolation occurs is reduced by a factor of
ffiffiffiffiffiffiffiffiffiffiffi
1� a
p

.
There is an additional benefit of lowering the isolator natural frequency if the damping is viscous. The
magnitude of the transmissibility of a linear mass–spring–damper system (the system without the magnets) at
the resonance frequency ol is given approximately mol/c, where m is the isolated mass and c the viscous
damping coefficient. Hence, the magnitude of the transmissibility of the HSLDS mount is given by mon/c. It
follows that if the viscous damping in the isolator is constant, the peak in the transmissibility is reduced by a
factor of on=ol ¼

ffiffiffiffiffiffiffiffiffiffiffi
1� a
p

.

3. Experiments

A laboratory scale experimental rig was designed and built to illustrate the principle described in Section 2.
The HSLDS mount attached to the platform of a vertical shaker is shown in Fig. 5. Similar to the model
described above, it comprises three magnets, two coil springs and a smooth central round bar. Two magnets
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Fig. 5. Experimental rig showing the HSLDS mount attached to the shaker table.
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Fig. 6. Measured transmissibility to determine the mount properties. Transmissibility of the system without the coil springs and the

magnets arranged in a repelling configuration (dashed line). Transmissibility of the mass–spring system without the magnets at the

extremities of the bar (solid line).
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were fixed at the top and the bottom of the bar at a distance d ¼ 3.81 cm from the central magnet of mass
0.04 kg, which was free to move vertically, sliding on the central bar. To take into account the static
displacement of the isolated mass due to gravity and ensure symmetry of the magnetic force, a washer of about
2mm was inserted between the lower spring and the magnet to which it was attached.

The main aim of the experiment was to compare the transmissibility curves of the isolator with that of a
conventional mass–spring system, which was realised by simply replacing the magnets at each end of the
central bar with non-magnetic elements.

First, the magnetic constant, Cm, was measured. For this purpose, the springs were removed and the central
magnet was reversed, so that it was repelled by those at the extremities of the shaft. The mean distance
between the magnets at each end of the central bar and the central magnet was 3.4 cm. In this case, the stiffness
had a hardening characteristic. However, the isolator was excited using a stepped-sine generated by an HP
analyser 35656A such that the relative amplitude between the base and the suspended mass was small. Thus, it
was possible to assume that the stiffness was constant. The dashed line in Fig. 6 shows the absolute value of
the ratio between the acceleration of the suspended mass and the acceleration of the base (transmissibility).
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The peak occurs at the resonance frequency at about 13.25Hz which, given the oscillating mass, gives the
stiffness to be 277.23N/m. Setting x ¼ 0, ks ¼ 0 and k ¼ 277.23N/m in Eq. (4) results in

Cm ¼ 2:72� 10�3 Nm2. (14)

Second, the stiffness of the springs was measured by suspending the mass only on the two springs and
removing the lower and upper magnets (equivalent linear system). The corresponding transmissibility
measurement is shown as a solid line in Fig. 6. It can be seen that the resonance peak is at a frequency of
13.1Hz, which means that the combined stiffness of the springs is

2ks ¼ 271N=m: (15)

The non-dimensional parameter a can thus be calculated:

a ¼
Cm

ksd
3
� 0:72. (16)

From Eq. (13), the natural frequency of the HSLDS system is, therefore, predicted to be about 7Hz.
Having estimated the natural frequency of the HSLDS isolator, an experiment was conducted to see if the

isolator performed as expected. It was assembled as shown in Fig. 5 and placed on the vertical shaker. It was
excited at discrete frequencies from 6 to 10Hz, and the base displacement amplitude of 3mm was kept
constant throughout the tests. Acceleration of the base and the isolated mass was measured using one PCB
type 352C22 and one ENDEVCO 2256-100 model accelerometers. At each frequency, once the system was at
steady state, 15 s of data were captured using an NI DAQPad-6020E acquisition card. The ratio of the rms
acceleration of the isolated mass to the rms acceleration of the base was calculated for each excitation
frequency and this is plotted in Fig. 7, where it is labelled as transmissibility. This was repeated for an
excitation level of 4mm and this is also plotted in Fig. 7. As well as these graphs, the transmissibility of the
isolator without the magnets fitted is also plotted for comparison. It can be seen that the HSLDS stiffness
system has a peak at 7Hz as predicted, which is roughly half that of the isolator without the magnets. It
should be noted that the amplitude of vibration at the resonance frequency has also been reduced by a factor
of two, which is in line with that expected for a system with viscous damping.

To assess whether the HSLDS isolator was behaving as a linear system, the spectral content of the
acceleration time history of the isolated mass was calculated for each excitation frequency. As expected from a
system with cubic nonlinearity, odd higher order harmonics were observed. In Fig. 8, the ratio between
the largest perceptible higher order harmonic (the third), |A3|, and that at the excitation frequency, |A1|, are
plotted. It can be seen that the amplitude of the third harmonic is about 30 times less than that of the
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fundamental frequency |A1| for each frequency of excitation. This demonstrates that the nonlinearity in the
isolator is very weak for the excitation levels used.

4. Discussion

In the static analysis of the HSLDS isolator, the magnetic force was modelled using Coulomb’s law. Despite
this being a very simple model, the analytical predictions and the experimental results agree reasonably well. It
can be seen from Fig. 7 that the peak transmissibility was about 1.5, which means that the absolute motion of
the isolated mass was about 6mm for a 4mm base displacement, and hence the relative displacement between
the isolated mass and the base was about 2mm. This is about 5.25% of the distance between the central
magnet and the end magnets, which means that the nonlinear component of the force is about 1.5% of the
linear component; so the nonlinearity is negligible for this isolator when subjected to reasonably high base
excitation levels (4mm). The main advantage of the HSLDS system is its load-bearing capability. Reducing
the natural frequency by a factor of two would be possible by using springs four times softer. A suspended
mass of 40 g will have a natural frequency of 7Hz if it is suspended on a spring with a coefficient of 77.5N/m.
However, this would mean a static displacement of 5mm. With the HSLDS mount the static displacement is
dependent only on the coil springs, which have a combined stiffness of 271N/m resulting in a static
displacement of only 1.5mm.

5. Conclusions

The static and linearised dynamic behaviour of an HSLDS isolator has been investigated. The isolator
consisted of mechanical springs providing a positive stiffness and magnets in an attracting configuration
providing a negative stiffness. The combination of the mechanical stiffness and the nonlinear stiffness of the
magnets results in a device that has HSLDS characteristics. A test rig was built using off-the-shelf magnets and
coil springs to demonstrate the practicality of the proposed device and to validate the mathematical model.
A reduction in the natural frequency by a factor of two from about 14 to 7Hz was achieved by using the
magnets, and the measured transmissibility from a displacement input showed that the device behaved
approximately linearly.
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